Use suitable identities to find the products : $(3-2 x)(3+2 x)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(3-2 x)(3+2 x)$

Using the identity $(a+b)(a-b)=a^{2}-b^{2},$ we have :

$(3-2 x)(3+2 x)=(3)^{2}-(2 x)^{2}=9-4 x^{2}$

Similar Questions

Determine which of the following polynomials has $(x + 1)$ a factor : $x^{4}+x^{3}+x^{2}+x+1$.

Verify whether the following are zeroes of the polynomial, indicated against them.

$p(x)=lx+m,\,\, x=-\,\frac{m}{l}$

Factorise each of the following : $27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p$

Factorise : $\frac{25}{4} x^{2}-\frac{y^{2}}{9}$

Factorise the following using appropriate identities :$x^{2}-\frac{y^{2}}{100}$